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Transfer Services Design and Use 

James R. Stewart 
Production Computing/SIERRA Architecture Department 

Engineering Sciences Center 
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Box 5800 
Albuquerque, NM 87 185-0826 

Abstract 
This paper presents a description of the SIERRA Framework Version 3 
parallel transfer operators. The high-level design including object 
interrelationships, as well as requirements for their use, is discussed. Transfer 
operators are used for moving field data from one computational mesh to 
another. The need for this service spans many different applications. The most 
common application is to enable loose coupling of multiple physics modules, 
such as for the coupling of a quasi-statics analysis with a thermal analysis. 
The SIERRA transfer operators support the transfer of nodal and element 
fields between meshes of different, arbitrary parallel decompositions. Also 
supplied are “copy” transfer operators for efficient transfer of fields between 
identical meshes. A “copy” transfer operator is also implemented for 
constraint objects. Each of these transfer operators is described. Also, two 
different parallel algorithms are presented for handling the geometric 
misalignment between different parallel-distributed meshes. 
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SIERRA Framework Version 3: 
Transfer Services Design and Use 

1 
This paper presents important features of the SIERRA Framework Version 3 transfer subsystem. 
The high-level design of the subsystem is given, along with descriptions of the transfer operators 
and their parallel algorithms. The operators are designed to work in a fully distributed parallel 
environment. In addition to the subsystem design, we also focus on how an application developer 
constructs and uses the transfer operators. Although this paper does not provide an Application 
Programming Interface (API), mappings of functionality to specific SIERRA C++ classes are 
provided. It is recommended that application developers consult the appropriate class header files 
to obtain the API. 

1 . I  Concepts and Capabilities 
Transfer operators can be thought of herein as collections of (C++) transfer objects working 
together to move data from one computational mesh to another computational mesh. In version 3 
of the SIERRA framework, data is thus moved from one SIERRA region to another SIERRA 
region, given that there is a one-to-one correlation between a region and a mesh. The two regions 
may or may not belong to the same SIERRA procedure. The terms intraprocedural transfer and 
interprocedural transfer are used in this paper to describe these two cases, respectively. 
Definitions of the SIERRA region and procedure, along with other useful SIERRA concepts and 
objects, are described in Ref. 1. 

Transfer operators have many applications. First and foremost, they are useful for “loose” 
coupling of different physics codes. They are also used in a posteriori error estimators for 
transferring residuals and other quantities needed for solving the local problems and for 
computing inner products. For problems involving large deformations such as penetration 
problems, transfer operators may be used for moving the solution and state variables to a 
regenerated adaptive mesh for a restart. 

The computational meshes involved in the data transfer can have different, arbitrary parallel 
decompositions. This is referred to as the different-mesh case. If it is known a priori that these 
meshes are identical (i.e., their nodes and elements have the same global numbering and parallel 
processor distribution), then much more efficient transfer operators can be developed. This is 
referred to as the same-mesh case. 

The SIERRA Framework Version 3 transfer operators handle three types of variables: nodal (or 
node) variables, element variables, and field variables registered on constraint objects. For .the 
same-mesh case, there are very efficient nodal, element, and constraint-object “copy” transfer 
operators. For the different-mesh case, there are transfer operators only for nodal and element 
variables. The element variables (for the different-mesh case) must be piecewise-constant fields 
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so that these variables can be represented by a single value at the centroid of the element. The 
(serial) interpolation algorithms for the different-mesh case mirror those found in MAPVAR [2]. 
Nodal variables are interpolated using the finite-element shape functions, while element variables 
are interpolated from a trilinear polynomial constructed using a least-squares element-patch 
projection (in two dimensions, the interpolating polynomial is bilinear; in one dimension, it is 
linear). 

Remark 
The element transfer operators are designed to also work with face and edge variables. In this 
context we speak of face or edge “elements,” which can be used, for example, for the transfer 
of surface fields in three and two dimensions, respectively. However, the element transfer 
operators have not been tested for this purpose. 

For the different-mesh case, the transfer operators consist of two main components: search and 
interpolation. The interpolation methods used for nodal and element variables were mentioned 
above. In a distributed parallel environment, as opposed to a shared-memory parallel environment 
or a serial environment, the search becomes more critical and is very important to the successful 
execution of the transfer. The search is broken down into two parts-parallel search and local 
search. The parallel search uses a Recursive Coordinate Bisection (RCB) decomposition to handle 
the .geometric misalignment of the meshes across the processors. The local search uses the point- 
in-box method [3], which is the same search method used in MAPVAR [2]. The same-mesh 
“copy” transfer operators achieve their efficiency because the search step is entirely avoided, and 
the interpolation step is trivial (it is just a data copy). 

1.2 Document Organ izat ion 
In Section 2 we build on the concepts and capabilities introduced above, and provide an overview 
of the high-level subsystem design. The overview includes a presentation of the object model, a 
description of how the transfer objects are mapped to C++ classes used in SIERRA, and a 
discussion of how interprocedural and intraprocedural transfers are used by an application. In 
Section 3 we present a detailed discussion on the interpolation algorithms used in the transfer 
operators, including information needed by an application for their usage. Specifically, the 
interpolation methods are the copy and finite-element shape-function interpolation algorithms for 
nodal variables, the copy and least-squares element-patch projection algorithms for element 
variables, and the copy algorithm for constraint-object variables. As mentioned previously, the 
parallel aspects of the transfer operators introduce complexity. This complexity leads to certain 
choices about how the transfers can be carried out in parallel. In Section 4 we present two 
different parallel algorithms and discuss their trade-offs. A summary and a discussion of possible 
future work is given in Section 5. 

a 



2 Transfer Subsystem Overview 

isA 

This section presents the object design of the transfer subsystem and provides the relevant C++ 
classes used in SIERRA Framework Version 3 for implementing the design. We also discuss the 
usage of interprocedural and intruprocedurul transfers by an application. 

2.1 Transfer Design 
The transfer subsystem design includes a transfer object as well as various auxilliary objects. The 
design is shown in Fig. 2.1. 

uses( 1)  t 
transfers 

data from data to 

constructs( 1) 

Transfer Support 

Figure 2.1. Transfer subsystem object model. 

The purpose of a transfer operator is to transfer field data, i.e., variables registered on mesh 
objects, from a send region to a receive region. The variables to be transferred are specified in the 
transfer registrar. Except for the “copy” transfer operators (nodal copy, element copy, and 
constraint-object copy), the send region and receive region may have arbitrarily different meshes, 
implying that these meshes may have arbitrarily different distributions among the processors. The 
parallel implementation of a transfer operator is completely hidden from the application 
developer. All transfer operators have the same user interface except possibly for construction and 
initialization. The “copy” transfer operators do not require an initialization function, while the 
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different-mesh transfer operators require an initialization function as well as additional algorithm 
control data. 

Remark 
The “copy” transfer operators require exactly the same meshes, with identical parallel 
decompositions, for both the send and receive regions. 

Any number of transfer operators can be implemented. In general, different operators may be 
implemented as different derived classes from the transfer support base class. Alternatively, 
multiple operators may be embedded in the same derived transfer support class. The latter design 
is used for the two different-mesh transfer operators implemented in SIERRA Framework Version 
3. These two operators are nodal interpolation and element-centroid least-squares projection. 
Specification of the appropriate transfer operator is done through the setting of control data. This 
aspect of operator usage is explained in more detail in Section 3.4 and Section 3.5. The reason for 
sharing a single derived transfer support class is that this class sets up and executes the geometric 
search, including both the local search and the parallel search. The search constitutes a large part 
of the transfer operator, and the basic steps are the same for both the nodal and element cases. As 
mentioned in Section 1, we use the point-in-box method [3] for the local search, and an RCB 
decomposition (via Zoltan [4]) for the parallel search. 

To use a transfer operator, the application developer must first construct the transfer object and 
one or more transfer registrar objects. These steps are usually done inside a parser handler 
function. There is one registrar for each variable that is transferred. The registrar holds the names 
and states of the send and receive variables (i.e., variables registered in the send and receive 
regions; see Fig. 2.1). The state information makes it possible, for example, to transfer a variable 
from the “new” state in the send mesh to the “old” state in the receive mesh. In general, any 
combination is possible. The registrar also holds the number of nesting levels of the variables. 
Currently, only the element copy transfer operator provides support for nested variables; however, 
support for nesting in the other transfer operators can easily be added. 

For intraprocedural transfers, the application developer is responsible for calling the transfer 
operators from one or more mechanics algorithms. Calls to interprocedural transfer operators that 
involve two sequentially executing procedures are handled by the SIERRA framework. In general, 
no additional code needs to be written by the application developer. 

2.2 Mapping to SIERRA Classes 
The objects shown in Fig. 2.1 correspond to C++ classes in SIERRA Framework Version 3. The 
class names are given in Table 2.1. In Table 2.2, we provide the important framework classes 
used by the transfer subsystem. (The X f  er-ElemCentroidLinear class shown in Table 2.2 is 
actually part of the transfer subsystem; however, it is derived from a framework class and used by 
the element-centroid least-squares projection transfer operator, as indicated in the “Notes” 
column.) It is important to note that in future versions of SIERRA the design and implementation 
may evolve or change completely, although the underlying transfer operators will likely remain. 
For example, the implementation of the local search is currently done in the Fmwk-Localsearch 
class (see Table 2.2). The interface to this class is such that the point-in-box method could be 
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Transfer Object 

Transfer 

replaced by some other local search method without affecting any other part of the overall transfer 
operator. 

SIERRA Class 

Xfer-Transfer 

Table 2.1. Mapping of Transfer Ob 
C++ classes 

~~~ ~~ ~ 

Different Mesh Transfer 

ects to SIERRA Framework Version 3 

Xf er-ParTrans f er-Support 

Communication 
Specification 

Transfer Registrar 

Fmwk-CommSpec 

I Xfer-TransferRegistrar 

Communication 
Operations 

Transfer Support Xfer-Transfer::Support 

Element Copy Xfer-Elemcopy-Support 

Fmwk-CommMgr 

Constraint-Object Copy 1 Xf er-ConsOb j Copy-Support 

Least-Squares Patch 
Projection 

Basis and Field 
Sampling for Least- 
Squares Patch 

~~ 

Fmwk-Recover Fi e Id 

Xfer-Elemcentroid 
Linear 

Table 2.2. Important SIERRA Framework Version 3 Classes Used by 
Transfer Subsystem 

Master Element 
Operations 

. Elem-MasterElem 

I I 

SIERRA Class 

SIERRA Region 1 Fmwk-Region I 
Geometric Fmwk-GeomDecomp 

Local Search Fmwk-Localsearch 

Uses Zoltan [4] for RCB decomposition 

Implements point-in-box method [3] 

Used for parallel algorithms 

Used for parallel algorithms 

Used for the element-centroid least- 
squares projection transfer operator 

~~ 

Derived from Fmwk-Recover Fi e Id; 
computes basis and element field at 
centroid of each element in patch 

Used for different-mesh transfer 
operators 
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2.3 lntraprocedural Versus lnterprocedural Transfers 
Transfer operations can be performed in one of two places inside a SIERRA execution. The first is 
within a single procedure; this type of transfer is referred to as intraprocedural. Data is transferred 
between two regions that are owned by the same procedure, as shown in Fig. 2.2. For example, 
transfers might occur after every time step in a procedure involving the coupling of thermal and 
fluid analyses. The intraprocedural transfer is the most common type of transfer usage. 

Figure 2.2. Usage of intraprocedural transfers: Data is 
transferred between two regions belonging to the same 
procedure. The application code is responsible for executing 
these transfers. 

The second place a transfer operation can be performed in SIERRA is between two procedures; 
this type of transfer is referred to as interprocedural and can be used for a much looser coupling 
between the two types of physics, as illustrated in Fig. 2.3. For example, one application for 
interprocedural transfers is a quasi-static preload followed by a transient dynamics analysis. The 
quasi-static preload and transient dynamics would each have its own SIERRA procedure; and a 
transfer object would be used to initialize the stress tensor and displacement vector for the 
transient dynamics analysis, following the preload phase. 
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Figure 2.3. Usage of interprocedural transfers. Data is 
transferred between two regions belonging to different 
procedures. In this example, the transfers are carried out 
after execution of procedure A and before execution of 
procedure B. The execution of these transfers is handled by 
SIERRA. 

Structurally, there is no difference between intraprocedural and interprocedural transfers. The only 
diflerence is when these transfers can be called during execution. This, in turn, is dictated by 
whether the owning procedures of the two regions involved in the transfer are the same 
(intraprocedural) or different (interprocedural). In a SIERRA execution, as soon as a procedure 
finishes executing, any interprocedural transfers involving the just-completed procedure and the 
subsequent procedure are carried out; then the subsequent procedure begins its execution. The 
calls to these transfers (both initialization and execution) are handled by  the framework. 

On the other hand, the calls to all intraprocedural transfers must be implemented by the 
application developer, since these calls will be made from within an application’s procedure. For 
this reason, intraprocedural transfers require more code from the application developer. Note that 
interprocedural transfers potentially use less CPU time because they will probably be called less 
frequently. 

Remark 
The procedure coupling shown in Fig. 2.3 is not the only way that interprocedural transfers 
can be used. In certain a posteriori error estimators, for example, interprocedural transfers are 
used to transfer data between the global mesh (region A) and a local element mesh (region B). 
The local element mesh (equivalently, the local region) is not part of the procedure that is 
currently executing. Instead, a dummy procedure is created to house region B, which has the 
effect of making the transfers interprocedural. While this approach is mainly a technicality 
and has no impact on the purpose or use of the transfer, it does demonstrate the generality by 
which interprocedural transfers may be constructed and used. It is important to note that in 
this case SIERRA does not execute the transfers; this task is carried out inside the error 
estimator. 
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3 Transfer Operators 
The transfer operators presented in this section have been implemented in SIERRA Framework 
Version 3. These operators are constructed incrementally by an application, based on the 
following general procedure: 

1. Construct an (almost) empty transfer object by supplying the proper SIERRA support object 
corresponding to the desired transfer operator. The support objects are singletons and are 
constructed in the application’s main routine. 

2. Fill in the required transfer data, such as the send and receive regions, mechanics and 
mechanics instances (if any), etc. Note that this step cannot be done until the regions and 
mechanics objects have been constructed. See X f  er-Transf er . h for the API. 

3. Construct the transfer registrars and provide the names and states of the send and receive 
variables. If the variables are nested, also provide the number of nesting levels (currently only 
the element copy operator supports nested variables). 

4. Supply any required and, if desired, optional transfer control data. Some transfer operators 
require more control data than other transfer operators. 

5. Commit the transfer object. 

Note that the different-mesh transfer operators require an initialize method in addition to an 
execute method (called trans f er-s tate), while the same-mesh transfer operators (nodal copy, 
element copy and constraint-object copy) require only the execute method. 

The mechanics and mechanics instance information mentioned in step 2 warrants further 
discussion. One of the purposes of the mechanics and mechanics instance specifications is to 
define a mesh extent for the transfer operator. That is, this information tells the transfer operator 
what mesh objects (elements, faces, edges, nodes, or constraint objects) are involved in the 
transfer, in both the send and receive regions. In general, the mesh extent is determined as 
follows. If no mechanics is specified, then the mesh extent is the entire region. If a mechanics is 
specified without a mechanics instance, then the mesh extent is determined by the equivalence- 
use associated with the mechanics. If both a mechanics and a mechanics instance are specified, 
then the mesh extent is defined by both the equivalence-use associated with the mechanics and 
the mechanics instance. 

The second purpose of the mechanics specification is to identify the master element to be used by 
the transfer operator. (Note that the Nodal Copy and Constraint-Object Copy transfer operators do 
not require a master element.) If a mechanics is specified, then a unique master element must be 
obtainable from the mechanics context and the variable to be transferred. If no mechanics is 
specified, then it is a requirement that only one master element family exist in the region (e.g., a 
hexahedral family consisting of a fully-integrated linear hexahedron and a fully-integrated 
quadrilateral hexahedron). For the transfer search step (in which the transfer variables are not 
used and, therefore, a unique master element is not determinable), the “richest” master element in 
the master element family is used by default (the quadrilateral hexahedron in the previous 

e 
e 
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example). Remarks on the limitations of using mechanics and mechanics instances in the transfer 
operator API are given in Section 5. 

A description of each transfer operator, including assumptions and restrictions for its usage, 
follows. 

3.1 Nodal Copy 
The SIERRA support class for the nodal copy transfer operator is X f  er-Nodalcopy-Support. 
The transfer operator “copies” nodal fields from the send region onto the corresponding nodes of 
the receive region. This transfer is very restrictive in that the send and receive regions must have 
exactly the same meshes with the same parallel decompositions. This restriction implies that the 
global IDS of the nodes must be exactly the same in each mesh. On the other hand, this transfer is 
fully parallel without requiring a single communication operation. Consequently, the nodal copy 
transfer operator is very simple and inexpensive, and should be used whenever it is known that the 
send and receive regions have exactly the same meshes. 

The nodal copy transfer operator can be used for the entire volume mesh, i.e., every node in the 
mesh, or on a subset of the mesh, including a surface or set of surfaces. The subsets are defined in 
terms of mesh extents that are associated with SIERRA mechanics or SIERRA mechanics 
instances, as discussed in the previous section. 

Remark 
There is a special version of the nodal copy transfer operator where the user may hardwire the 
association of a receive node with a send node. Here, it is not required that the global IDS of 
the nodes or the parallel decompositions of the send and receive meshes be identical. The 
association of the receive nodes with the send nodes is done by providing the transfer operator 
with a CommSpec object (i.e., a parallel communication specification; see Section 4 and Ref. 
1). The actual transfer of data, therefore, involves communication as determined by the 
CommSpec object. The intended use of this version of the nodal copy transfer operator is for 
transferring data between like mesh-subsets that exist in different global meshes. For example, 
element block A (with identical elements, nodes, and connectivities) might exist in both the 
send and receive meshes. However, if there exist other element blocks in either mesh, the 
elements and nodes in block A in the send mesh might have different global IDS and reside on 
different processors than the corresponding elements and nodes in block A in the receive 
mesh. A CommSpec can then be constructed that hardwires the association of the 
corresponding block A nodes in the send and receive meshes. The nodal copy transfer can 
then proceed without requiring a geometric search (such a search would be required, for 
example, if this transfer was performed with the nodal interpolation transfer operator; see 
Section 3.4). An optional control data variable can be specified which would reverse the 
direction of the communication, so that the reverse transfer (i.e., receive mesh to send mesh) 
could be carried out without requiring the instantiation of a new transfer operator. 

Usage and control data for the nodal copy transfer operator are highlighted below. 
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0 A call to Xfer-Nodalcopy-Support : : self ( ) must be supplied in the application’s main 
routine. 

Optional control data: 

- CONVERSE <Int>dummy-value (This variable is only used for the special version of the 
nodal copy transfer operator described in the remark above. If the variable is registered, 
then the communication path is reversed. The default is not-registered; dummy-value is 
ignored.) 

There is no initialize method for this transfer operator. 

3.2 Element Copy 
The SIERRA support class for the element copy transfer operator is Xf er-Elemcopy-Support. 
The transfer operator “copies” element fields from the send region onto the corresponding 
elements of the receive region. Like the nodal copy transfer operator, the element copy transfer 
operator is very restrictive. The send and receive regions must have exactly the same meshes with 
the same parallel decompositions. This restriction implies that the global IDS of the elements must 
be exactly the same in each mesh. On the other hand, this transfer is fully parallel without 
requiring a single communication ,operation. Consequently, the element copy transfer operator is 
very simple and inexpensive, and should be used whenever it is known that the send and receive 
regions have exactly the same meshes. 

An additional restriction is that the master elements of the corresponding elements in the send and 
receive regions must be identical, except when the element variable only has one coefficient, i.e., 
the variable is constant on the element. In that case there is no issue related to data associativity 
within the element, such as might happen if the variable was associated with integration points but 
the integration points were not the same in the two master elements being used. 

The element copy transfer operator does support nested element variables. The number of nesting 
levels for each variable must be specified in the transfer registrar. The default number of levels is 
one (i.e., no nesting). 

Usage of the element copy transfer operator requires that the SIERRA element mechanics be 
supplied, Le., provided during construction of the transfer object. This requirement is necessary so 
that the correct equivalence-use [ 11 can be obtained for the element. Alternatively, one may 
specify a list of inputloutput instance names, i.e., element block names. In this case the transfer 
object automatically finds the correct SIERRA element mechanics. 

Usage and control data for the element copy transfer operator are highlighted below. 

A call to Xfer-Elemcopy-Support : : self ( ) must be supplied in the application’s main 
routine. 

There is no control data associated with this transfer operator. 

There is no initialize method . .  for this transfer operator. 
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3.3 Constrai nt-Object Copy 
The SIERRA support class for the constraint-object copy transfer operator is 
X f  er-ConsOb j Copy-Support. The transfer operator “copies” constraint-object fields from the 
send region onto the corresponding constraint objects of the receive region. This transfer is very 
restrictive in that the send and receive regions must have exactly the same meshes with the same 
parallel decompositions. This restriction implies that the global IDS of the constraint object must 
be exactly the same in each mesh. On the other hand, this transfer is fully parallel without 
requiring a single communication operation. Consequently, the constraint-object copy transfer 
operator is very simple and inexpensive. 

The constraint-object copy transfer operator can be used for the entire volume mesh, i.e., every 
constraint in the mesh, or on a subset of the mesh, including a surface or set of surfaces. The 
subsets are defined in terms of mesh extents that are associated with SIERRA mechanics or 
SIERRA mechanics instances. 

A constraint-object field might be, for example, a force or a flux associated with a node-face pair 
that is constrained in some way. Generally, transferring such a field between different meshes is 
not desirable. In such cases it is often required (for accuracy in enforcing the constraint) that the 
constraint force or flux be recomputed on the other mesh. For this reason, a different-mesh 
version of the constraint-object copy transfer operator has not been developed. The constraint- 
object copy transfer operator is simply a means of avoiding the costly recomputation of the 
constraint whenever the two meshes are exactly the same. 

A typical use of the constraint-object copy transfer operator is as an interprocedural transfer. It 
may be the case that the constraint objects themselves have not yet been constructed in the receive 
region at the time the interprocedural transfer is invoked. The reason is that constraint objects are 
typically not read from an input mesh file; instead, these objects are constructed during execution 
(in the send region). To accommodate this, the transfer operator will, if necessary, construct the 
receive-region constraint objects during its execution. The use of this functionality is currently 
very limited. A mechanics instance must be specified, and the instance names in the send and 
receive regions must be identical. Furthermore, the constraint-object construction has only been 
implemented in serial. A parallel implementation can be added if necessary. 

Usage and control data for the constraint-object copy transfer operator are highlighted below. 

A call to X f  er-ConsObj Copy-Support : : self ( ) must be supplied in the application’s 
main routine. 

There is no control data associated with this transfer operator. 

There is no initialize method for this transfer operator. 

3.4 Nodal Interpolation 
The SIERRA support class for the nodal interpolation algorithm is 
X f  er-ParTrans f er-Support. The transfer operator interpolates nodal fields from the send 
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region onto the nodes of the receive region. The interpolation is local within an element and is 
carried out using the finite-element shape functions. Unlike the nodal copy transfer operator, the 
nodal interpolation transfer operator is completely general in that it can handle two regions with 
independently generated meshes. The meshes can have different parallel decompositions and are 
not required to have conformal boundaries. For example, if the two meshes discretize a curved 
domain boundary in different ways, each mesh will have a number of nodes that do not lie inside 
the volume of the other mesh. The operator is set up to allow for different ways of handling this 
case. Methods available in SIERRA Framework Version 3 are extrapolate and ignore. For the 
extrapolate option, the receive nodes lying outside the send region are paired with the 
geometrically closest element in the send region. The field values for these nodes are then 
computed by extrapolation using the shape functions of the paired element. A user-subroutine 
capability for handling the “nodes outside region’’ is planned for the future. 

The nodal interpolation transfer operator uses parallel algorithm 1 ,  described in Section 4.2. The 
geometric search tolerance must be supplied by the application developer through control data. 
The geometric search consists of two parts-the parallel search and the local search. The parallel 
search uses RCB (Recursive Coordinate Bisection) to define a new decomposition for handling 
the geometric misalignment of the two meshes among the processors. The RCB implementation is 
supplied by Zoltan [4]. The local search uses the point-in-box method 133 for quickly finding all 
the receive nodes that lie inside each of the send elements. 

The transfer operator can be used for either volume-to-volume transfers or surface-to-suljface 
transfers. The search for the volume transfers is basically the same as that for the surface transfers. 
In the former case, the search uses volume master elements and returns elemenunode pairs (send- 
region elements paired with receive-region nodes). In the latter case, the search uses surface 
master elements and returns facehode pairs (send-region faces paired with receive-region nodes). 
In two dimensions, the surface-transfer search would return edgehode pairs; however, this 
capability has not been tested. 

It is important to note that nodal variables are usually not associated with a master element. The 
nodal interpolation transfer operator, however, requires that a master element be registered in the 
send region. Moreover, it is required that the master element be associated with the nodal 
variables being transferred. This association is done, for example, through the assignment of a 
given mechanics context (see Ref. 1) to both the nodal variable and the master element. For the 
purpose of the search, if multiple master elements (of the same topological family) are registered 
for a given element, then the topologically richest element is used. For example, if the transfer 
operator detects that both an 8-node linear hexahedron and a 27-node quadratic hexahedron are 
registered (e.g., for a mixed-element formulation), the search would use the 27-node hexahedron 
for determining whether a receive node lies inside it. 

New element types can easily be added by supplying the required is-in-element and 
in t erpo 1 at e_po in t master element methods. The in t erpo 1 at e_po in t method uses the 
nodal shape functions to compute the value of the nodal field at a point, given that point’s 
parametric coordinates with respect to the element. The i s-in-element method determines 

, whether a point in space lies geometrically inside or outside the element. This method also 
computes the parametric coordinates. For nonconforming discretizations on a surface, the surface 
transfers would first need to project the receive node onto the send surface, then use the face (or 
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edge in two dimensions) master element to perform the interpolation. This projection step is 
assumed to be part of the face or edge is-in-element implementation. 

Surface transfers involving noncoplanar surfaces require the additional control-data specification 
of the surface gap tolerance. The surface gap tolerance is used in the definition of the local search 
box (used in the local search) for a given send face or edge. The local search box is initially set to 
be the minimum bounding box of the face or edge; this bounding box is always aligned with the 
coordinate axes. The bounding box is then expanded in the +/- (x,y,z) directions (+/- (x,y) 
directions in two dimensions) by the distance equal to the surface gap tolerance. This expansion 
ensures that the dimension of the local search box in the direction normal to the face or edge is at 
least at large as the tolerance. Receive nodes lying outside the search box (and, therefore, outside 
the surface gap tolerance) will not be found by the search algorithm. 

The surface gap tolerance also affects the parallel search because the same expanded search box is 
used to determine the extent of ghosting of the send faces or edges. Ghosting is required to 
guarantee parallel consistency and robustness of the algorithm, i.e., to ensure that a given receive 
node is always paired with the same send face or edge regardless of the number of processors. In 
general, a larger surface gap tolerance leads to increased ghosting, resulting in more 
communication and larger memory use. Therefore, one should not specify a surface gap tolerance 
that is unnecessarily large. Recall, however, that a tolerance that is too low may cause failure of 
the search algorithm because it could result in receive nodes that are never found. For these 
reasons, the selection of the surface gap tolerance should be done with care. 

Remark 
It is recommended that the ignore option for handling the “nodes outside region” not be used 
for surface transfers, since nodes lying outside the surface gap tolerance might incorrectly be 
ignored. 

Usage and control data for the nodal interpolation transfer operator are highlighted below. 

0 A call to X f  er-ParTransf er-Support : : self ( ) must be supplied in the application’s 
main routine. 

0 Specification of the nodal interpolation transfer operator is done by setting the 
TRANSFER-TYPE control data variable: 
- TRANSFER-TYPE <enumeration>type, where type = Xfer-Transfer: :NODAL-INTERP 

0 Other required control data: 

- SENDMODEL-COORDNAME <String>name 

- SEND-MODEL-COORD-STATE <Stringmame 

- RECV-MODEL-COORD-NAME cS tringxame 

- RECV-MODEL-COORD-STATE <Stringmame 

- GEOM-TOL <Real>search-tolerance 
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- OBJECTS-OUTSIDE-REGION <String>name (EXTRAPOLATE and IGNORE are the 
only valid options.) 

Optional control data: 
- SEND-REGION-OB JECT-TYPE <S trinpobject-type (Valid values are ELEMENT, 

FACE, or EDGE; supplying this information simplifies and speeds up the transfer 
operator.) 

- SURFACE-GAP-TOLERANCE <Real>gap-tolerance (The default value is gap-tolerance 
= 0.0. A nonzero value is recommended for surface transfers involving nonplanar surfaces 
or surfaces with any gaps between them.) 

- XFER-DEBUG-PRINT <Int>print-flag (A nonzero value turns debug printing on. The 
default value is print-flag = 0.) 

- XFER-TIMERS <Int>timer-flag (timer-flag = 1 turns on transfer timing information, 
which is printed to the log file during execution. The default value is timer-flag = 0, which 
turns off the timers). 

0 There is an initialize method for this transfer operator. For intraprocedural transfers, the 
call to the initialize method must be made by the application. For interprocedural 
transfers used between two sequenced procedures, this call is handled by the SIERRA 
framework (see Section 2.3 for more a more detailed discussion). 

3.5 Element-Centroid Least-Squares Projection 
The SIERRA support class for this transfer operator is Xf er-ParTransf er-Support. The 
transfer operator computes element fields in the receive region using trilinear polynomials 
constructed from elements in the send region. The use of this transfer is restricted to piecewise- 
constant element fields only! Such fields can be represented on each element by a single value 
associated with the element centroid. The trilinear interpolating polynomials are of the form 

$(x, y, z )  = a. + a lx  + a2y + a3z + a4xy + a5yz + a6xz + a7xyz (1) 

The coefficients ao, . . ., a7 are computed for each send-region element, and for each scalar 
component of the field being transferred, using a least-squares patch projection. The patches are 
element-centered; i.e., each patch consists of the union of the node-centered patches of each of the 
element’s nodes. If (i, 7, 2) denotes the centroid of a receive-region element, the transferred value 
for a scalar field (or scalar component of a vector or tensor field), $= , is computed as 

The least-squares patch projection involves solving a linear system of the form 

T ATAx = A b 
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where 

A =  

al a2 a3 a4 a5 a6 a7 I’ 

(4) 

and where n is the number of sampling points in the patch. Because we are restricted to piecewise- 
constant element fields, n is also equal to the number of elements in the patch. The 
implementation of the least-squares projection’ is in the SIERRA class Fmwk-RecoverField 
(see Fmwk-RecoverField. h). This implementation was put in the framework, i.e., not in the 
transfer subsystem, because the projection algorithm is also to be used for purposes other than 
transfers, such as the Zienkiewicz-Zhu error estimator [SI and the element prolongation algorithm 
in codes such as adagio [6]. Fmwk-RecoverField is an abstract base class requiring derivation 
for each particular application. The derived class must implement a virtual method that computes 
the basis vector, i.e., the rows of A ,  and the element field, i.e., the rows of b , for each sampling 
point in the patch. This method is implemented for the element-centroid least-squares projection 
transfer operator in the class X f  er-ElemCentroidLinear. 

Of concern here is the solvability of (4). If n < 8 ,  indicating that not enough elements are in the 

patch, A A will not possess full rank and (4) will not be solvable. Rank deficiency can also 
occur for n 2 8 if the sampling points are positioned in degenerate ways, such as if all the points 
lie in a plane. Figure 3.1 illustrates a solvable patch and an unsolvable patch in a simple two- 
dimensional mesh of a “T” shape using quadrilateral elements. The elements at or near the top 
ends of the “T” have insufficient patches for solvability; the patches for the other elements are 
sufficient. (Note that the two-dimensional analogy of (1) is 4(x, y )  = a. + alx  + a2y + a3xy ; 

therefore n 2 4 for solvability. The extension to three dimensions should be clear.) 

T 

1.  Much of the least-squares projection transfer operator was originally developed by Kevin Copps. 
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Not solvable - 

Solvable 

Figure 3.1. Illustration of a solvable patch and an unsolvable patch. 
Element A ( n  = 3 ) does not have enough neighbors to form a full- 
rank system for the least-squares projection, while element B 
( n  = 9 ) has a large-enough patch to ensure solvability ( n  is the size 
of the patch). 

To handle the rank-deficient systems, the least-squares implementation computes the condition 

number of A A , then systematically removes the linearly dependent columns and rows that 
cause the rank-deficiency2. This leads to a smaller, full-rank system; the resulting projection is 
wit6 respect to a reduced basis. For example, if in three dimensions all the sampling points lied in 
the xy plane, columns 4,6,7 and 8 would be linearly dependent and thus removed from the 
system, leading to the reduced basis (1, x ,  y ,  x y )  . The computed receive-region element-centroid 
value would then be q$c = a. + a,Z + a2Y + a4 iy .  In the limit of a patch consisting of a single 
element, all rows and columns except the first would be eliminated, leading to the (correct) 
projection q$c = ao, where a. would be the (send-region) element field value. . 

T 

If computational efficiency of the least-squares projection is a concern, then the condition number 
check and the subsequent removal of any linearly dependent columns and rows can be skipped. 
This is done by specifying the relative diagonal tolerance to be 0.0. A nonzero tolerance (where 
0.0 < to1 I 1.0) triggers the condition number check. The tolerance scales the largest diagonal 

entry in A A ; any diagonal entries smaller than this scaled value are removed from the system as 
described above. It should be noted that although skipping the condition number check could 
speed up the algorithm, it could also cause the algorithm to fail if the system is ill-conditioned. 
Therefore, one must use caution when requesting that the condition number be skipped. 

T 

Unlike the element copy transfer operator, the element-centroid least-squares projection transfer 
operator is completely general in that it can handle two regions with independently generated 
meshes. The meshes can have different parallel decompositions and are not required to have 
conformal boundaries. For example, if the two meshes discretize a curved domain boundary in 
different ways, each mesh may have a number of elements with centroids that do not lie inside the 
volume of the other mesh. The transfer operator is set up to allow for different ways of handling 
this case. Methods available in SIERRA Framework Version 3 are extrapolate and ignore. For the 
extrapolate option, the receive elements lying outside the send region are paired with the 

2. This algorithm was developed by Jason Hales. 
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geometrically closest element in the send region. The field values for these elements are then 
computed by extrapolation using the least-squares interpolating polynomial constructed for the 
paired element. A user-subroutine capability for handling the “elements outside region” is 
planned for the future. 

The projection algorithm, obviously, is not local within an element; therefore, ghost elements (and 
their nodes) must be created to form the patches for elements on processor boundaries. This is 
illustrated in Fig. 3.2 for the “T” mesh shown previously in Fig. 3.1. Here, the mesh is distributed 
as shown among two processors. The mesh-object ghosting procedure creates read-only 
temporary copies of each processor-boundary element (along with their nodes) on the adjacent 
processor. In this example, three of the ghosted elements on processor 1 would be used in the 
patch for element B. The ghosting is a service provided by the framework (see 
Fmwk-MeshManuf acture . h) and used by the transfer operator. 

Processor 0 I Processor I 

Mesh objects ghosted on Proc. 1 Mesh objects ghosted on Proc. 0 

Figure 3.2. Ghosting of mesh objects. Such ghosting is necessary to form 
the patches for the least-squares projection. In this example, element B has 
three ghost elements in its patch. 

The element-centroid least-squares projection transfer operator uses parallel algorithm 1 , 
described in Section 4.2. The geometric search tolerance must be supplied by the application 
developer through control data. The geometric search consists of two parts-the parallel search 
and the local search. The parallel search uses RCB to define a new decomposition for handling the 
geometric misalignment of the two meshes between the processors. The RCB implementation is 
supplied by Zoltan [4]. The local search uses the point-in-box method [3] for quickly finding all 
the receive-element centroids that lie inside each of the send elements. 

The transfer operator can be used for either volume-to-volume transfers or sur3Face-to-sul3Cace 
transfers. In the latter case, the transfers would involve piecewise-constant face or edge variables 
in three and two dimensions, respectively. As of the release of SIERRA Framework Version 3.01, 
the surface transfers have not been tested! The search for the volume transfers is basically the 
same as that for the surface transfers. For volume transfers, the search uses volume master 
elements and returns element/element pairs (send-region elements paired with receive-region 
elements). For surface transfers, the search uses surface master elements and returns face/face 
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pairs (send-region faces paired with receive-region faces). In two dimensions, the surface-transfer 
search would return edge/edge pairs. 

It is important to note that even though master elements are not used for the computation of the 
field value, they are still required for the search algorithm! Therefore, it is necessary that the send- 
region element field be registered with a master element usage (see Ref. 1). The master element is 
required to have an implementation of the is-in-element virtual method (see 
Elem-Mas terElem. h). This method determines whether a point in space (the receive-element 
centroid) lies geometrically inside or outside the (send-region) element. The method also 
computes the parametric coordinates of the point with respect to the element. For nonconforming 
discretizations on a surface, the surface transfers would first need to project the point onto the 
send surface, then use the face (or edge in two dimensions) master element to perform the idout 
test. This projection step is assumed to be part of the face or edge is-in-element 
implementation. New element types can easily be added by supplying the required 
i s-in-element master element method. 

For the purpose of the search, if multiple master elements (of the same topological family) are 
registered for a given element, then the topologically richest element is used. For example, if the 
transfer operator detects that both an 8-node linear hexahedron and a 27-node quadratic 
hexahedron are registered, e.g., for a mixed-element formulation, the search would use the 27- 
node hexahedron for determining whether a receive-element centroid lies inside it. 

Surface transfers involving noncoplanar surfaces require the additional control-data specification 
of the su$ace gap tolerance. The surface gap tolerance is used in the definition of the local search 
box (used in the local search) for a given send face or edge. The local search box is initially set to 
be the minimum bounding box of the face or edge; this bounding box is always aligned with the 
coordinate axes. The bounding box is then expanded in the +/- (x,y,z) directions (+/- (x,y) 
directions in two dimensions) by the distance equal to the surface gap tolerance. This expansion 
ensures that the dimension of the local search box in the direction normal to the face or edge is at 
least at large as the tolerance. Receive-face centroids (or receive-edge centroids in two 
dimensions) lying outside the search box (and, therefore, outside the surface gap tolerance) will 
not be found by the search algorithm. 

The surface gap tolerance also affects the parallel search because the same expanded search box is 
used to determine the extent of ghosting of the send faces or edges. Ghosting is required to 
guarantee parallel consistency and robustness of the algorithm, i.e., to ensure that a given receive 
face (or receive edge) is always paired with the same send face (or edge) regardless of the number 
of processors. In general, a larger surface gap tolerance leads to increased ghosting, resulting in 
more communication and larger memory use. Therefore, one should not specify a surface gap 
tolerance that is unnecessarily large. Recall, however, that a tolerance that is too low may cause 
failure of the search algorithm since it could result in receive nodes that are never found. For these 
reasons, the selection of the surface gap tolerance should be done with care. Note that since the 
least-squares patch recovery requires ghosting anyway, this is not as critical of an issue as it is for 
the nodal interpolation transfer operator (see Section 3.4). 
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Remark 
It is recommended that the ignore option for handling the “faces (or edges in two dimensions) 
outside region” not be used for surface transfers, since mesh objects lying outside the surface 
gap tolerance might incorrectly be ignored. 

Usage and control data for the element-centroid least-squares projection transfer operator are 
highlighted below. 

A call to Xf er-ParTransf er-Support : : self ( ) must be supplied in the application’s 
main routine. 

Specification of the element-centroid least-squares projection transfer operator is done by 
setting the TRANSFER-TYPE control data variable: 
- TRANSFER-TYPE cenumeration>type, where type = 

Xfer-Trans fer: : ELEM-CENTROID-LINEAR 

0 

Other required control data: 

- SEND-MODEL-COORD-NAME cString>name 

- SEND-MODEL-COORD-STATE <S tringxame 

- RECV-MODEL-COORD-NAME cString>name 

- RECV-MODEL-COORD-STATE <String>name 

- GEOM-TOL cReabsearch-tolerance 

- OB JECTS-OUTSIDE-REGION cString>name (EXTRAPOLATE or IGNORE are the 
only valid options.) 

Optional control data: 

SEND-REGION-OB JECT-TYPE <String>object-type (Valid values are ELEMENT, 
FACE, or EDGE; supplying this information simplifies and speeds up the transfer 
operator.) 

SURFACE-GAP-TOLERANCE cReal>gap-tolerance (The default value is gap-tolerance 
= 0.0. A nonzero value is recommended for surface transfers involving nonplanar surfaces 
and surfaces with any gaps between them.) 

XFER-LS-PROJECTION-DIAGONAL-TOL cReal>diagonal-tolerance (Valid values 
are 0.0 I diagonal-tolerance I 1 .O . If diagonal-tolerance = 0.0 , the condition number 
computation in the least-squares projection algorithm is skipped. The default value is 

diagonal-tolerance = 1 . 0 ~  lo-’’ .) 

XFER-DEBUG-PRINT <Int>print-flag (A nonzero value turns debug printing on. The 
default value is print-flag = 0.) 

XFER-TIMERS <Int>timer-flag (timer-flag = 1 turns on transfer timing information, 
which is printed to the log file during execution. The default valu‘e is timer-flag = 0, which 
turns off the timers) 
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e 0 There is an initialize method for this transfer operator. For intraprocedural transfers, the 
call to the initialize method must be made by the application. For interprocedural 
transfers used between two sequenced procedures, this call is handled by the SIERRA 
framework (see Section 2.3 for more a more detailed discussion). 

4 Parallel Algorithms for Transfers 
Among the most difficult and complex aspects of different-mesh SIERRA transfer operators are 
the parallel parts of the algorithms. The operators must account for different parallel distributions 
of the two meshes involved in the transfer operation. The general (and most common) case is 
when a processor owns a given chunk of space in one mesh and another (nonoverlapping) chunk 
in the other mesh. This case is common because often the two meshes are generated entirely 
independently of each other. Transfer operators involve intensive geometric searching. It is the 
responsibility of the transfer operator to geometrically align the two meshes on each processor so 
that the geometric searching can take place. This geometric alignment is the primary purpose of 
the parallel algorithm. 

Different parallel algorithms are possible. Each has trade-offs involving load balance and message 
sizes. In SIERRA, parallel algorithms can be designed at a high level using the ideas of the 
multiple concurrent domain decompositions as well as the parallel communication specification 
(CommSpec). We describe the idea of multiple concurrent domain decompositions in the 
following section. This is a general capability provided by SIERRA that has applicability beyond 
transfers. The CommSpec is a topological relation connecting mesh objects of possibly different 
types (e.g., element->node) belonging to possibly different SIERRA regions. The CommSpec is, 
in effect, a parallel intermesh “connectivity,” and can be thought of as a generalization of the 
standard connectivity data structure used in traditional finite element analysis. The CommSpec is 
described in much more detail in Ref. 1, 

Two parallel algorithms for the transfer operators are described below. The better one to use 
depends on the specific application (see the discussion in Section 4.4). It is important to note that 
only parallel algorithm 1 is implemented in SIERRA Framework Version 3.  Implementation of 
both algorithms has been done outside of SIERRA and demonstrated on nonphysical model 
problems [7]. Ref. 7 also presents performance results for the algorithms. 

4.1 Multiple Concurrent Domain Decompositions 
In a distributed parallel environment, each processor owns a different piece of the problem (with 
small regions of overlap, or ghosting). This decomposition is usually constructed to balance the 
computational load while minimizing interprocessor communication, which amounts to parallel 
“overhead.” In SIERRA, such a decomposition is referred to as the primary decomposition. The 
primary decomposition is obtained through a preprocessing step (outside of SIERRA); the 
decomposed mesh is subsequently read in as input. 

In many situations the primary decomposition will either impede scalability or cause an algorithm 
to fail. For these reasons SIERRA provides a mechanism to dynamically create a secondary 
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decomposition, whereby a copy of the mesh (or appropriate mesh subset) is created according to 
the requirements of the algorithm. Perhaps the algorithm operates only on a subset of the mesh, 
such as a surface, which may in turn reside only on a subset of the processors (in the primary 
decomposition). If this algorithm was executed in the primary decomposition, the remaining 
processors would sit idle. The secondary decomposition would dynamically balance the 
computational load by equally distributing the surface among all the processors. 

For other algorithms such as the parallel transfer, the algorithm may fail in the primary 
decomposition (since on-processor geometric alignment of the two meshes is required). The 
SIERRA parallel transfer algorithms achieve geometric alignment on the processors by 
constructing a secondary decomposition, sometimes called a rendezvous decomposition [7 ] .  This 
decomposition is geometrically based and can be constructed, for example, by an RCB algorithm. 
Geometric alignment of the two meshes, i.e., the send and receive meshes, is guaranteed because 
both meshes are reconstructed in this new decomposition. The reconstructed meshes are referred 
to as secondary regions in SIERRA (these regions are more than just meshes-they are full- 
fledged SIERRA regions that may also contain registered field data). The secondary regions are 
copies of the original, Le., primary, regions, implying that sufficient memory must be available on 
each processor. However, usually only a subset of the primary regions is copied because the 
transfer, in general, does not need everything in the primary region. In addition, the secondary 
region is temporary; it is created for the sole purpose of the transfer, then deleted upon deletion of 
the transfer object. 

An application (including the transfer operator) uses the following SIERRA services in 
conjunction with constructing secondary decompositions. 

Definition of a secondary load-balanced decomposition for the appropriate subset of mesh 
objects (SIERRA uses the Zoltan dynamic load-balancing library [4] for this purpose). 

Construction of a communication map, i.e., a CommSpec, between the primary 
decomposition and the secondary decomposition. 

Construction of a copy of the appropriate region subset in the secondary decomposition. 

Communication of field values between the primary and secondary regions. 

A simple illustration of multiple concurrent domain decompositions is given in Fig. 4.1, which 
shows the overlay of a primary and a secondary decomposition on four processors for a two- 
dimensional mesh. The primary decomposition is topologically based, while the secondary region 
is geometrically based, making it suitable for geometric-searching algorithms. The secondary 
decomposition shown in the figure is typical of one generated by RCB. 
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Figure 4.1. Illustration of multiple con 

- Primary Decomposition 
I I I I Secondary Decomposition 

urrer domain de imposition Th ! 
primary and secondary decompositions are overlaid on four processors for a 
two-dimensional mesh. 

4.2 Parallel Algorithm 1 
The algorithm design is shown in Fig. 4.2. We wish to transfer registered field variables from the 
send (primary) region to the receive (primary) region. The sequence of steps in the algorithm is 
described below. For concreteness, the discussion is restricted to nodal-interpolation volume 
transfers, i.e., the volume-to-volume transfer of nodal variables; see Section 3.4. 

Generate the secondary decomposition for the send region and the receive region. This is done 
using the RCB algorithm supplied by Zoltan [4]. The RCB cuts are based on the elements of 
the send region and the nodes of the receive region. 

Construct the send secondary region and receive secondary region. Mappings between the 
corresponding primary and secondary regions are stored in CommSpec objects. 

Communicate the send mesh and physics data from the send primary region to the send 
secondary region. The mesh data consists of information about the elements and nodes. 

Communicate the receive mesh data from the receive primary region to the receive secondary 
region. The mesh data consists of information about the nodes. 

For each node in the receive secondary region, find the element in the send secondary region 
that contains the node. Because we are in the secondary decomposition, this search is entirely 
local, i.e., on-processor; it is done using the point-in-box algorithm [3]. The node-element 
pairs are stored in another CommSpec object, which in this case is a “local” CommSpec. (See 
CommSpec C in Fig. 4.3). 
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0 Still in the secondary decomposition, interpolate (for example, using the finite-element shape 
functions) the values onto each receive node using the nodal values of the send element that 
contains the node. 

Communicate the interpolated nodal values from the receive secondary region back to the 
receive primary region. This step is easily done by transposing the CommSpec connecting 
those two regions (CommSpec B), which reverses the communication path. 

send 
Region 

Mesh and 
physics data 
(CommSpec A) 

i 
send 

Secondary 
Region 

receive 
Region 

Mesh data 
(CommSpe 

receive 

On-processor search 
(CommSpec C) 

4- _I - __ - .- I - - 

Secondary 
Region 

. - I - I - - - - - 
On-proces sor 
interpolation - 

Figure 4.2. Design of parallel algorithm 1 for transfer operators. 

4.3 Parallel Algorithm 2 
The algorithm design is shown in Fig. 4.3. As in the above discussion, we wish to transfer 
registered field variables from the send (primary) region to the receive (primary) region. The 
sequence of steps in the algorithm is described below. Again for concreteness, the discussion is 
restricted to nodal-interpolation volume transfers, i.e., the volume-to-volume transfer of nodal 
variables; see Section 3.4. 

(Same step as parallel algorithm 1 )  Construct the send secondary region and receive 
secondary region. Mappings between the corresponding primary and secondary regions are 
stored in CommSpec objects. 

0 Communicate the send mesh data from the send primary region to the send secondary region. 
The mesh data consists of information about the elements and nodes. 

29 



e 
e 
e 
0 
e 
e 
0 
a 
a 
e 
e 
a 
e 
e 
e 
e 
e 
a 
e 
e 
a 
a 
a 
a 
a 
a 
a 
a 
e 
e 
a 
e 
e 
e 
e 
e 
e 
a 
a 
e 
e 
e 
a 

Communicate the receive mesh data from the receive primary region to the receive secondary 
region. The mesh data consists of information about the nodes. 

For each node in the receive secondary region, find the element in the send secondary region 
that contains the node. Because we are in the secondary decomposition, this search is entirely 
local, i.e., on-processor; it is done using the point-in-box algorithm [3]. The node-element 
pairs are stored in another CommSpec object, which in this case is a “local” CommSpec. (See 
CommSpec C in Fig. 4.3). 

Redistribute the receive secondary region to match the parallel decomposition of the send 
primary region. That is, communicate each receive node to the primary send processor that 
owns the send element containing that node. The CommSpec used for this step is obtained by 
composing CommSpec C with the transpose of the CommSpec that connects the send primary 
region to the send secondary region. (See CommSpec D in Fig. 4.3.) 

Communicate the receivelsend search data from the receive secondary region to the 
redistributed receive secondary region. For example, this information might consist of the ID 
of the send element that contains each receive node. 

Now in the redistributed receive region, interpolate (for example, using the finite-element 
shape functions) the values onto each receive node using the nodal values of the send element 
that contains the node. 

Communicate the interpolated nodal values from the redistributed receive secondary region 
back to the receive primary region. This is done using a new CommSpec created by 
composing the transpose of CommSpec D (see Fig. 4.3) with the transpose of the CommSpec 
that connects the receive primary region to the receive secondary region (CommSpec B). 

. .  
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Figure 4.3. Design of parallel algorithm 2 for transfer operators. 

4.4 Trade-offs Between Parallel Algorithms 1 and 2 
The main difference between the two parallel algorithms is the decomposition in which the actual 
interpolation of the data is performed. In parallel algorithm 1, the interpolation is performed in the 
secondary decomposition; in parallel algorithm 2, the interpolation is performed in the send 
primary decomposition. 

Algorithm 2 has more communication steps than algorithm 1, but potentially smaller messages. 
There is also the potential (in algorithm 2) that the interpolation step will become unbalanced if 
too many (or few) of the receive nodes end up on a single processor in the send primary 
decomposition. Note that this is possible because the receive primary mesh is independent of the 
send primary decomposition, and disproportionately many (or few) receive nodes could 
geometrically intersect the volume occupied by the send elements on a given processor. In 
algorithm 1, this situation can be controlled if the secondary decomposition (where the 
interpolations are carried out) is generated using input from both the send and receive meshes. For 
the nodal-interpolation volume transfer, this implies that the RCB cuts should be generated using 
both the elements in the send region and the nodes in the receive region (see the first step in 
algorithm 1). For the element-centroid least-squares projection transfer operator, this implies that 
the RCB cuts should be generated using both the elements in the send region and the elements in 
the receive region. 
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Finally, algorithm 2 entails an additional copy of the receive secondary region. This is due to the 
redistribution step, where the receive secondary region is redistributed to match the parallel 
decomposition of the send primary region. However, because the secondary region does not 
contain any physics data, the memory requirements still might not be significant when compared 
to the memory requirements of algorithm 1. 

Due to the above trade-offs, the choice of the best parallel algorithm is most likely problem 
dependent. 

5 Summary and Future Work 
In this paper we have presented the SIERRA transfer subsystem for SIERRA Framework Version 
3. The transfer operators within this subsystem are used for transferring nodal, element and 
constraint-object fields from one SIERRA region to another SIERRA region in a fully distributed 
parallel environment. “Copy” transfer operators are available for efficiency when it is known that 
the send mesh and the receive mesh are identical. For the general (different-mesh) case, a nodal 
interpolation transfer operator has been implemented for nodal fields, and an element-centroid 
least-squares patch recovery transfer operator has been implemented for (piecewise-constant) 
element fields. The transfer operators can be used for volume-to-volume transfers or surface-to- 
surface transfers. Two different parallel designs for the transfer algorithms were presented, 
although only one of them has been implemented thus far in the framework. 

The transfer subsystem will continue to evolve in response to requirements by SIERRA 
customers. Among the likely paths of this evolution are the following: 

0 Generalization and enhancement of the transfer API. As discussed in Section 3, the mesh 
extents (i.e., the sets of mesh objects) and master elements needed to execute the transfer 
operator are extracted from SIERRA mechanics objects, which are given as input to the 
transfer object. Currently this is the only way for the application developer to specify the mesh 
extents and master elements (except for the Nodal Copy and Element Copy transfer operators, 
where inputloutput instance names can alternatively be given). This interface has proven to be 
both overly complex and limiting. For example, it may be desirable to perform a parallel 
transfer operation on the set of elements that excludes ghosted elements. Since this element 
subset is not defined by a SIERRA mechanics object, the specification of such a mesh extent 
for the transfer operation is not currently possible. The master element specification (currently 
via a SIERRA mechanics object) has proven to be difficult because of the complexity in 
setting up SIERRA mechanics objects such that unique master elements can be extracted. A 
possible generalization of the transfer API might be to allow for direct specification of the 
mesh extents and master elements by the application developer. 

Addition of more transfer operators for piecewise-constant element fields. One possibility is 
the direct assignment of the send-element value to each of the receive elements whose 
centroid is contained within it. Thus, the least-squares patch recovery and interpolation steps 
would be skipped. Besides being potentially much less costly, this operator could be used in 
conjunction with state updates of the (receive-region) element fields by the application code 
following the execution of the transfer. 
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0 Implementation of transfer operators for higher-order, i.e., linear and above, element fields. 
Such a field might be an element variable for a fully integrated element (with more than one 
integration point) whose values are stored at the integration points. This capability might be 
needed, for example, for surface transfers of face variables. One issue is the expansion of the 
search to include all points associated with the element field, not just the element centroid, 
Le., find the send-element patch that contains the receive-element. 

0 Encapsulation of the parallel search capability. This enhancement would allow an application 
to create and re-use transfer “search” objects independently of any transfer interpolation 
algorithm. The search information could then be used for purposes other than transfers. 
Currently, parallel algorithm 1 stores the search information only in the secondary region. The 
encapsulated search capability would require that the search information be communicated 
back to the primary decompositions. Parallel algorithm 2 is a step in this direction; however, 
that algorithm only sends the search information back to the send primary region. It may also 
be desirable to communicate this information back to the receive primary region. 

0 Performance enhancements of the transfer operators. The memory and CPU requirements of 
the transfer operators will become more critical in simulations involving changing mesh 
topologies, such as adaptive simulations. The reason is that the transfer operator will have to 
be “re-initialized” every time the mesh changes, e.g., via adaptive mesh refinement or 
unrefinement. Re-initialization is a costly operation because it performs the geometric search. 
Other parts of the transfer operators are also candidates for performance improvements, such 
as the least-squares patch recovery used for the element fields. This recovery is done during 
every execution of the transfer (not just whenever the mesh topology changes) because the 
values of the fields will potentially have changed. The intensive interprocessor 
communication required in the different-mesh transfers may also be a CPU bottleneck. 
Memory and CPU performance of the transfer operators has not been a priority to date, but 
will likely become one in the future. 

Specialization of the transfer operators. For certain applications, information may be available 
to allow for algorithmic shortcuts. In certain a posteriori error estimators, for example, 
transfers are used to move fields from a global coarse mesh to a local mesh that is generated 
by refining a single coarse-mesh element. In this case the entire search step could be skipped, 
given that there is just a single send-mesh element involved in the transfer. 
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